Eigen  3.2.92
Eigen::ArrayBase< Derived > Class Template Reference

Detailed Description

template<typename Derived>
class Eigen::ArrayBase< Derived >

Base class for all 1D and 2D array, and related expressions.

An array is similar to a dense vector or matrix. While matrices are mathematical objects with well defined linear algebra operators, an array is just a collection of scalar values arranged in a one or two dimensionnal fashion. As the main consequence, all operations applied to an array are performed coefficient wise. Furthermore, arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient constructors allowing to easily write generic code working for both scalar values and arrays.

This class is the base that is inherited by all array expression types.

Template Parameters
Derivedis the derived type, e.g., an array or an expression type.

This class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_ARRAYBASE_PLUGIN.

See also
class MatrixBase, The class hierarchy
+ Inheritance diagram for Eigen::ArrayBase< Derived >:

Public Types

enum  {
  RowsAtCompileTime,
  ColsAtCompileTime,
  SizeAtCompileTime,
  MaxRowsAtCompileTime,
  MaxColsAtCompileTime,
  MaxSizeAtCompileTime,
  IsVectorAtCompileTime,
  Flags,
  IsRowMajor
}
 
typedef Array< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit?RowMajor:ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainArray
 
typedef Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit?RowMajor:ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainMatrix
 
typedef internal::conditional< internal::is_same< typename internal::traits< Derived >::XprKind, MatrixXpr >::value, PlainMatrix, PlainArray >::type PlainObject
 The plain matrix or array type corresponding to this expression. More...
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef internal::traits< Derived >::StorageIndex StorageIndex
 The type used to store indices. More...
 
typedef Scalar value_type
 

Public Member Functions

const AbsReturnType abs () const
 
const Abs2ReturnType abs2 () const
 
const AcosReturnType acos () const
 
bool all () const
 
bool allFinite () const
 
bool any () const
 
const ArgReturnType arg () const
 
const AsinReturnType asin () const
 
const AtanReturnType atan () const
 
template<typename CustomBinaryOp , typename OtherDerived >
const CwiseBinaryOp< CustomBinaryOp, const Derived, const OtherDerived > binaryExpr (const Eigen::ArrayBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
 
Block< Derived > block (Index startRow, Index startCol, Index blockRows, Index blockCols)
 
const Block< const Derived > block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
 
template<int BlockRows, int BlockCols>
Block< Derived, BlockRows, BlockCols > block (Index startRow, Index startCol)
 
template<int BlockRows, int BlockCols>
const Block< const Derived, BlockRows, BlockCols > block (Index startRow, Index startCol) const
 
template<int BlockRows, int BlockCols>
Block< Derived, BlockRows, BlockCols > block (Index startRow, Index startCol, Index blockRows, Index blockCols)
 
template<int BlockRows, int BlockCols>
const Block< const Derived, BlockRows, BlockCols > block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
 
Block< Derived > bottomLeftCorner (Index cRows, Index cCols)
 
const Block< const Derived > bottomLeftCorner (Index cRows, Index cCols) const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomLeftCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomLeftCorner () const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomLeftCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomLeftCorner (Index cRows, Index cCols) const
 
Block< Derived > bottomRightCorner (Index cRows, Index cCols)
 
const Block< const Derived > bottomRightCorner (Index cRows, Index cCols) const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomRightCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomRightCorner () const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > bottomRightCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > bottomRightCorner (Index cRows, Index cCols) const
 
RowsBlockXpr bottomRows (Index n)
 
ConstRowsBlockXpr bottomRows (Index n) const
 
template<int N>
NRowsBlockXpr< N >::Type bottomRows (Index n=N)
 
template<int N>
ConstNRowsBlockXpr< N >::Type bottomRows (Index n=N) const
 
template<typename NewType >
CastXpr< NewType >::Type cast () const
 
const CeilReturnType ceil () const
 
ColXpr col (Index i)
 
ConstColXpr col (Index i) const
 
ConstColwiseReturnType colwise () const
 
ColwiseReturnType colwise ()
 
ConjugateReturnType conjugate () const
 
const CosReturnType cos () const
 
const CoshReturnType cosh () const
 
Index count () const
 
const CubeReturnType cube () const
 
const CwiseAbsReturnType cwiseAbs () const
 
const CwiseAbs2ReturnType cwiseAbs2 () const
 
template<typename OtherDerived >
const CwiseBinaryOp< std::equal_to< Scalar >, const Derived, const OtherDerived > cwiseEqual (const Eigen::ArrayBase< OtherDerived > &other) const
 
const CwiseScalarEqualReturnType cwiseEqual (const Scalar &s) const
 
const CwiseInverseReturnType cwiseInverse () const
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const Derived, const OtherDerived > cwiseMax (const Eigen::ArrayBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const Derived, const ConstantReturnType > cwiseMax (const Scalar &other) const
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const Derived, const OtherDerived > cwiseMin (const Eigen::ArrayBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const Derived, const ConstantReturnType > cwiseMin (const Scalar &other) const
 
template<typename OtherDerived >
const CwiseBinaryOp< std::not_equal_to< Scalar >, const Derived, const OtherDerived > cwiseNotEqual (const Eigen::ArrayBase< OtherDerived > &other) const
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_product_op< typename Derived::Scalar, typename OtherDerived::Scalar >, const Derived, const OtherDerived > cwiseProduct (const Eigen::ArrayBase< OtherDerived > &other) const
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_quotient_op< Scalar >, const Derived, const OtherDerived > cwiseQuotient (const Eigen::ArrayBase< OtherDerived > &other) const
 
const CwiseSignReturnType cwiseSign () const
 
const CwiseSqrtReturnType cwiseSqrt () const
 
const ErfReturnType erf () const
 
const ErfcReturnType erfc () const
 
EvalReturnType eval () const
 
const ExpReturnType exp () const
 
void fill (const Scalar &value)
 
template<unsigned int Added, unsigned int Removed>
EIGEN_DEPRECATED const Derived & flagged () const
 
const FloorReturnType floor () const
 
const WithFormat< Derived > format (const IOFormat &fmt) const
 
bool hasNaN () const
 
SegmentReturnType head (Index n)
 
ConstSegmentReturnType head (Index n) const
 
template<int N>
FixedSegmentReturnType< N >::Type head (Index n=N)
 
template<int N>
ConstFixedSegmentReturnType< N >::Type head (Index n=N) const
 
const ImagReturnType imag () const
 
NonConstImagReturnType imag ()
 
Index innerSize () const
 
const InverseReturnType inverse () const
 
template<typename OtherDerived >
bool isApprox (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isApproxToConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
const IsFiniteReturnType isFinite () const
 
const IsInfReturnType isInf () const
 
template<typename Derived >
bool isMuchSmallerThan (const typename NumTraits< Scalar >::Real &other, const RealScalar &prec) const
 
template<typename OtherDerived >
bool isMuchSmallerThan (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
const IsNaNReturnType isNaN () const
 
bool isOnes (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isZero (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
ColsBlockXpr leftCols (Index n)
 
ConstColsBlockXpr leftCols (Index n) const
 
template<int N>
NColsBlockXpr< N >::Type leftCols (Index n=N)
 
template<int N>
ConstNColsBlockXpr< N >::Type leftCols (Index n=N) const
 
const LgammaReturnType lgamma () const
 
const LogReturnType log () const
 
const Log10ReturnType log10 () const
 
MatrixWrapper< Derived > matrix ()
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const Derived, const OtherDerived > max (const Eigen::ArrayBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const Derived, const CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObject > > max (const Scalar &other) const
 
template<typename IndexType >
internal::traits< Derived >::Scalar maxCoeff (IndexType *rowPtr, IndexType *colPtr) const
 
template<typename IndexType >
internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
internal::traits< Derived >::Scalar maxCoeff () const
 
Scalar mean () const
 
ColsBlockXpr middleCols (Index startCol, Index numCols)
 
ConstColsBlockXpr middleCols (Index startCol, Index numCols) const
 
template<int N>
NColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N)
 
template<int N>
ConstNColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N) const
 
RowsBlockXpr middleRows (Index startRow, Index n)
 
ConstRowsBlockXpr middleRows (Index startRow, Index n) const
 
template<int N>
NRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N)
 
template<int N>
ConstNRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N) const
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const Derived, const OtherDerived > min (const Eigen::ArrayBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const Derived, const CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObject > > min (const Scalar &other) const
 
template<typename IndexType >
internal::traits< Derived >::Scalar minCoeff (IndexType *rowId, IndexType *colId) const
 
template<typename IndexType >
internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
internal::traits< Derived >::Scalar minCoeff () const
 
const NestByValue< Derived > nestByValue () const
 
Index nonZeros () const
 
template<typename CustomNullaryOp >
const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index size, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (const CustomNullaryOp &func)
 
const BooleanNotReturnType operator! () const
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_boolean_and_op, const Derived, const OtherDerived > operator&& (const Eigen::ArrayBase< OtherDerived > &other) const
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_product_op< typename Derived::Scalar, typename OtherDerived::Scalar >, const Derived, const OtherDerived > operator* (const Eigen::ArrayBase< OtherDerived > &other) const
 
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
 
const ScalarComplexMultipleReturnType operator* (const std::complex< Scalar > &scalar) const
 
template<typename OtherDerived >
Derived & operator*= (const ArrayBase< OtherDerived > &other)
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_sum_op< Scalar >, const Derived, const OtherDerived > operator+ (const Eigen::ArrayBase< OtherDerived > &other) const
 
const CwiseUnaryOp< internal::scalar_add_op< Scalar >, const Derived > operator+ (const Scalar &scalar) const
 
template<typename OtherDerived >
Derived & operator+= (const ArrayBase< OtherDerived > &other)
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_difference_op< Scalar >, const Derived, const OtherDerived > operator- (const Eigen::ArrayBase< OtherDerived > &other) const
 
const NegativeReturnType operator- () const
 
const CwiseUnaryOp< internal::scalar_sub_op< Scalar >, const Derived > operator- (const Scalar &scalar) const
 
template<typename OtherDerived >
Derived & operator-= (const ArrayBase< OtherDerived > &other)
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_quotient_op< Scalar >, const Derived, const OtherDerived > operator/ (const Eigen::ArrayBase< OtherDerived > &other) const
 
const ScalarQuotient1ReturnType operator/ (const Scalar &scalar) const
 
template<typename OtherDerived >
Derived & operator/= (const ArrayBase< OtherDerived > &other)
 
CommaInitializer< Derived > operator<< (const Scalar &s)
 
template<typename OtherDerived >
CommaInitializer< Derived > operator<< (const DenseBase< OtherDerived > &other)
 
Derived & operator= (const ArrayBase &other)
 
Derived & operator= (const Scalar &value)
 
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_boolean_or_op, const Derived, const OtherDerived > operator|| (const Eigen::ArrayBase< OtherDerived > &other) const
 
Index outerSize () const
 
template<typename ExponentDerived >
const CwiseBinaryOp< internal::scalar_binary_pow_op< Scalar, typename ExponentDerived::Scalar >, const Derived, const ExponentDerived > pow (const ArrayBase< ExponentDerived > &exponents) const
 
const PowReturnType pow (const Scalar &exponent) const
 
Scalar prod () const
 
RealReturnType real () const
 
NonConstRealReturnType real ()
 
template<typename Func >
internal::traits< Derived >::Scalar redux (const Func &func) const
 
template<int RowFactor, int ColFactor>
const Replicate< Derived, RowFactor, ColFactor > replicate () const
 
const Replicate< Derived, Dynamic, Dynamic > replicate (Index rowFactor, Index colFactor) const
 
void resize (Index newSize)
 
void resize (Index rows, Index cols)
 
ReverseReturnType reverse ()
 
ConstReverseReturnType reverse () const
 
void reverseInPlace ()
 
ColsBlockXpr rightCols (Index n)
 
ConstColsBlockXpr rightCols (Index n) const
 
template<int N>
NColsBlockXpr< N >::Type rightCols (Index n=N)
 
template<int N>
ConstNColsBlockXpr< N >::Type rightCols (Index n=N) const
 
const RoundReturnType round () const
 
RowXpr row (Index i)
 
ConstRowXpr row (Index i) const
 
ConstRowwiseReturnType rowwise () const
 
RowwiseReturnType rowwise ()
 
const RsqrtReturnType rsqrt () const
 
SegmentReturnType segment (Index start, Index n)
 
ConstSegmentReturnType segment (Index start, Index n) const
 
template<int N>
FixedSegmentReturnType< N >::Type segment (Index start, Index n=N)
 
template<int N>
ConstFixedSegmentReturnType< N >::Type segment (Index start, Index n=N) const
 
template<typename ThenDerived , typename ElseDerived >
const Select< Derived, ThenDerived, ElseDerived > select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const
 
template<typename ThenDerived >
const Select< Derived, ThenDerived, typename ThenDerived::ConstantReturnType > select (const DenseBase< ThenDerived > &thenMatrix, const typename ThenDerived::Scalar &elseScalar) const
 
template<typename ElseDerived >
const Select< Derived, typename ElseDerived::ConstantReturnType, ElseDerived > select (const typename ElseDerived::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const
 
Derived & setConstant (const Scalar &value)
 
Derived & setLinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
Derived & setLinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
Derived & setOnes ()
 
Derived & setRandom ()
 
Derived & setZero ()
 
const SignReturnType sign () const
 
const SinReturnType sin () const
 
const SinhReturnType sinh () const
 
const SqrtReturnType sqrt () const
 
const SquareReturnType square () const
 
Scalar sum () const
 
template<typename OtherDerived >
void swap (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
void swap (PlainObjectBase< OtherDerived > &other)
 
SegmentReturnType tail (Index n)
 
ConstSegmentReturnType tail (Index n) const
 
template<int N>
FixedSegmentReturnType< N >::Type tail (Index n=N)
 
template<int N>
ConstFixedSegmentReturnType< N >::Type tail (Index n=N) const
 
const TanReturnType tan () const
 
const TanhReturnType tanh () const
 
Block< Derived > topLeftCorner (Index cRows, Index cCols)
 
const Block< const Derived > topLeftCorner (Index cRows, Index cCols) const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topLeftCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topLeftCorner () const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topLeftCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topLeftCorner (Index cRows, Index cCols) const
 
Block< Derived > topRightCorner (Index cRows, Index cCols)
 
const Block< const Derived > topRightCorner (Index cRows, Index cCols) const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topRightCorner ()
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topRightCorner () const
 
template<int CRows, int CCols>
Block< Derived, CRows, CCols > topRightCorner (Index cRows, Index cCols)
 
template<int CRows, int CCols>
const Block< const Derived, CRows, CCols > topRightCorner (Index cRows, Index cCols) const
 
RowsBlockXpr topRows (Index n)
 
ConstRowsBlockXpr topRows (Index n) const
 
template<int N>
NRowsBlockXpr< N >::Type topRows (Index n=N)
 
template<int N>
ConstNRowsBlockXpr< N >::Type topRows (Index n=N) const
 
TransposeReturnType transpose ()
 
ConstTransposeReturnType transpose () const
 
void transposeInPlace ()
 
template<typename CustomUnaryOp >
const CwiseUnaryOp< CustomUnaryOp, const Derived > unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise. More...
 
template<typename CustomViewOp >
const CwiseUnaryView< CustomViewOp, const Derived > unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
 
CoeffReturnType value () const
 
template<typename Visitor >
void visit (Visitor &func) const
 

Static Public Member Functions

static const ConstantReturnType Constant (Index rows, Index cols, const Scalar &value)
 
static const ConstantReturnType Constant (Index size, const Scalar &value)
 
static const ConstantReturnType Constant (const Scalar &value)
 
static const SequentialLinSpacedReturnType LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
static const RandomAccessLinSpacedReturnType LinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
static const SequentialLinSpacedReturnType LinSpaced (Sequential_t, const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
static const RandomAccessLinSpacedReturnType LinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly space vector. More...
 
static const ConstantReturnType Ones (Index rows, Index cols)
 
static const ConstantReturnType Ones (Index size)
 
static const ConstantReturnType Ones ()
 
static const RandomReturnType Random (Index rows, Index cols)
 
static const RandomReturnType Random (Index size)
 
static const RandomReturnType Random ()
 
static const ConstantReturnType Zero (Index rows, Index cols)
 
static const ConstantReturnType Zero (Index size)
 
static const ConstantReturnType Zero ()
 

Related Functions

(Note that these are not member functions.)

template<typename Derived >
std::ostream & operator<< (std::ostream &s, const DenseBase< Derived > &m)
 

Member Typedef Documentation

template<typename Derived>
typedef Array<typename internal::traits<Derived>::Scalar, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime, AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime > Eigen::DenseBase< Derived >::PlainArray
inherited

The plain array type corresponding to this expression.

See also
PlainObject
template<typename Derived>
typedef Matrix<typename internal::traits<Derived>::Scalar, internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime, AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime > Eigen::DenseBase< Derived >::PlainMatrix
inherited

The plain matrix type corresponding to this expression.

See also
PlainObject
template<typename Derived>
typedef internal::conditional<internal::is_same<typename internal::traits<Derived>::XprKind,MatrixXpr >::value, PlainMatrix, PlainArray>::type Eigen::DenseBase< Derived >::PlainObject
inherited

The plain matrix or array type corresponding to this expression.

This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.

template<typename Derived>
typedef internal::traits<Derived>::Scalar Eigen::DenseBase< Derived >::Scalar
inherited

The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.

template<typename Derived>
typedef internal::traits<Derived>::StorageIndex Eigen::DenseBase< Derived >::StorageIndex
inherited

The type used to store indices.

This typedef is relevant for types that store multiple indices such as PermutationMatrix or Transpositions, otherwise it defaults to Eigen::Index

See also
Preprocessor directives, Eigen::Index, SparseMatrixBase.
template<typename Derived>
typedef Scalar Eigen::DenseBase< Derived >::value_type
inherited

The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.

It is an alias for the Scalar type

Member Enumeration Documentation

template<typename Derived>
anonymous enum
inherited
Enumerator
RowsAtCompileTime 

The number of rows at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

See also
MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime
ColsAtCompileTime 

The number of columns at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

See also
MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime
SizeAtCompileTime 

This is equal to the number of coefficients, i.e. the number of rows times the number of columns, or to Dynamic if this is not known at compile-time.

See also
RowsAtCompileTime, ColsAtCompileTime
MaxRowsAtCompileTime 

This value is equal to the maximum possible number of rows that this expression might have. If this expression might have an arbitrarily high number of rows, this value is set to Dynamic.

This value is useful to know when evaluating an expression, in order to determine whether it is possible to avoid doing a dynamic memory allocation.

See also
RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
MaxColsAtCompileTime 

This value is equal to the maximum possible number of columns that this expression might have. If this expression might have an arbitrarily high number of columns, this value is set to Dynamic.

This value is useful to know when evaluating an expression, in order to determine whether it is possible to avoid doing a dynamic memory allocation.

See also
ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
MaxSizeAtCompileTime 

This value is equal to the maximum possible number of coefficients that this expression might have. If this expression might have an arbitrarily high number of coefficients, this value is set to Dynamic.

This value is useful to know when evaluating an expression, in order to determine whether it is possible to avoid doing a dynamic memory allocation.

See also
SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
IsVectorAtCompileTime 

This is set to true if either the number of rows or the number of columns is known at compile-time to be equal to 1. Indeed, in that case, we are dealing with a column-vector (if there is only one column) or with a row-vector (if there is only one row).

Flags 

This stores expression Flags flags which may or may not be inherited by new expressions constructed from this one. See the list of flags.

IsRowMajor 

True if this expression has row-major storage order.

Member Function Documentation

template<typename Derived>
const AbsReturnType Eigen::ArrayBase< Derived >::abs ( ) const
inline
Returns
an expression of the coefficient-wise absolute value of *this

Example:

Array3d v(1,-2,-3);
cout << v.abs() << endl;

Output:

1
2
3
See also
abs2()
template<typename Derived>
const Abs2ReturnType Eigen::ArrayBase< Derived >::abs2 ( ) const
inline
Returns
an expression of the coefficient-wise squared absolute value of *this

Example:

Array3d v(1,-2,-3);
cout << v.abs2() << endl;

Output:

1
4
9
See also
abs(), square()
template<typename Derived>
const AcosReturnType Eigen::ArrayBase< Derived >::acos ( ) const
inline
Returns
an expression of the coefficient-wise arc cosine of *this.

Example:

Array3d v(0, sqrt(2.)/2, 1);
cout << v.acos() << endl;

Output:

 1.57
0.785
    0
See also
cos(), asin()
template<typename Derived >
bool Eigen::DenseBase< Derived >::all ( ) const
inlineinherited
Returns
true if all coefficients are true

Example:

Vector3f boxMin(Vector3f::Zero()), boxMax(Vector3f::Ones());
Vector3f p0 = Vector3f::Random(), p1 = Vector3f::Random().cwiseAbs();
// let's check if p0 and p1 are inside the axis aligned box defined by the corners boxMin,boxMax:
cout << "Is (" << p0.transpose() << ") inside the box: "
<< ((boxMin.array()<p0.array()).all() && (boxMax.array()>p0.array()).all()) << endl;
cout << "Is (" << p1.transpose() << ") inside the box: "
<< ((boxMin.array()<p1.array()).all() && (boxMax.array()>p1.array()).all()) << endl;

Output:

Is (  0.68 -0.211  0.566) inside the box: 0
Is (0.597 0.823 0.605) inside the box: 1
See also
any(), Cwise::operator<()
template<typename Derived >
bool Eigen::DenseBase< Derived >::allFinite ( ) const
inlineinherited
Returns
true if *this contains only finite numbers, i.e., no NaN and no +/-INF values.
See also
hasNaN()
template<typename Derived >
bool Eigen::DenseBase< Derived >::any ( ) const
inlineinherited
Returns
true if at least one coefficient is true
See also
all()
template<typename Derived>
const ArgReturnType Eigen::ArrayBase< Derived >::arg ( ) const
inline
Returns
an expression of the coefficient-wise phase angle of *this

Example:

ArrayXcf v = ArrayXcf::Random(3);
cout << v << endl << endl;
cout << arg(v) << endl;

Output:

 (0.68,-0.211)
 (0.566,0.597)
(0.823,-0.605)

-0.301
 0.812
-0.634
See also
abs()
template<typename Derived>
const AsinReturnType Eigen::ArrayBase< Derived >::asin ( ) const
inline
Returns
an expression of the coefficient-wise arc sine of *this.

Example:

Array3d v(0, sqrt(2.)/2, 1);
cout << v.asin() << endl;

Output:

    0
0.785
 1.57
See also
sin(), acos()
template<typename Derived>
const AtanReturnType Eigen::ArrayBase< Derived >::atan ( ) const
inline
Returns
an expression of the coefficient-wise arc tan of *this.

Example:

ArrayXd v = ArrayXd::LinSpaced(5,0,1);
cout << v.atan() << endl;

Output:

    0
0.245
0.464
0.644
0.785
See also
tan(), asin(), acos()
template<typename Derived>
template<typename CustomBinaryOp , typename OtherDerived >
const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::binaryExpr ( const Eigen::ArrayBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const
inline
Returns
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
typedef complex<Scalar> result_type;
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};
int main(int, char**)
{
cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See also
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
template<typename Derived>
Block<Derived> Eigen::DenseBase< Derived >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
)
inlineinherited
Returns
a dynamic-size expression of a block in *this.
Parameters
startRowthe first row in the block
startColthe first column in the block
blockRowsthe number of rows in the block
blockColsthe number of columns in the block

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block(1, 1, 2, 2):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size matrix, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, block(Index,Index)
template<typename Derived>
const Block<const Derived> Eigen::DenseBase< Derived >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const
inlineinherited

This is the const version of block(Index,Index,Index,Index).

template<typename Derived>
template<int BlockRows, int BlockCols>
Block<Derived, BlockRows, BlockCols> Eigen::DenseBase< Derived >::block ( Index  startRow,
Index  startCol 
)
inlineinherited
Returns
a fixed-size expression of a block in *this.

The template parameters BlockRows and BlockCols are the number of rows and columns in the block.

Parameters
startRowthe first row in the block
startColthe first column in the block

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl;
m.block<2,2>(1,1).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block<2,2>(1,1):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note
since block is a templated member, the keyword template has to be used if the matrix type is also a template parameter:
m.template block<3,3>(1,1);
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int BlockRows, int BlockCols>
const Block<const Derived, BlockRows, BlockCols> Eigen::DenseBase< Derived >::block ( Index  startRow,
Index  startCol 
) const
inlineinherited

This is the const version of block<>(Index, Index).

template<typename Derived>
template<int BlockRows, int BlockCols>
Block<Derived, BlockRows, BlockCols> Eigen::DenseBase< Derived >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
)
inlineinherited
Returns
an expression of a block in *this.
Template Parameters
BlockRowsnumber of rows in block as specified at compile-time
BlockColsnumber of columns in block as specified at compile-time
Parameters
startRowthe first row in the block
startColthe first column in the block
blockRowsnumber of rows in block as specified at run-time
blockColsnumber of columns in block as specified at run-time

This function is mainly useful for blocks where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, blockRows should equal BlockRows unless BlockRows is Dynamic, and the same for the number of columns.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int BlockRows, int BlockCols>
const Block<const Derived, BlockRows, BlockCols> Eigen::DenseBase< Derived >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const
inlineinherited

This is the const version of block<>(Index, Index, Index, Index).

template<typename Derived>
Block<Derived> Eigen::DenseBase< Derived >::bottomLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a bottom-left corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner(2, 2):" << endl;
cout << m.bottomLeftCorner(2, 2) << endl;
m.bottomLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner(2, 2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
const Block<const Derived> Eigen::DenseBase< Derived >::bottomLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomLeftCorner(Index, Index).

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomLeftCorner ( )
inlineinherited
Returns
an expression of a fixed-size bottom-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,2>():" << endl;
cout << m.bottomLeftCorner<2,2>() << endl;
m.bottomLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,2>():
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomLeftCorner ( ) const
inlineinherited

This is the const version of bottomLeftCorner<int, int>().

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a bottom-left corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomLeftCorner<2,Dynamic>(2,2) << endl;
m.bottomLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,Dynamic>(2,2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also
class Block
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomLeftCorner<int, int>(Index, Index).

template<typename Derived>
Block<Derived> Eigen::DenseBase< Derived >::bottomRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a bottom-right corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner(2, 2):" << endl;
cout << m.bottomRightCorner(2, 2) << endl;
m.bottomRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner(2, 2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
const Block<const Derived> Eigen::DenseBase< Derived >::bottomRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomRightCorner(Index, Index).

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomRightCorner ( )
inlineinherited
Returns
an expression of a fixed-size bottom-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,2>():" << endl;
cout << m.bottomRightCorner<2,2>() << endl;
m.bottomRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,2>():
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomRightCorner ( ) const
inlineinherited

This is the const version of bottomRightCorner<int, int>().

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a bottom-right corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl;
m.bottomRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,Dynamic>(2,2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also
class Block
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::bottomRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomRightCorner<int, int>(Index, Index).

template<typename Derived>
RowsBlockXpr Eigen::DenseBase< Derived >::bottomRows ( Index  n)
inlineinherited
Returns
a block consisting of the bottom rows of *this.
Parameters
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows(2):" << endl;
cout << a.bottomRows(2) << endl;
a.bottomRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows(2):
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
ConstRowsBlockXpr Eigen::DenseBase< Derived >::bottomRows ( Index  n) const
inlineinherited

This is the const version of bottomRows(Index).

template<typename Derived>
template<int N>
NRowsBlockXpr<N>::Type Eigen::DenseBase< Derived >::bottomRows ( Index  n = N)
inlineinherited
Returns
a block consisting of the bottom rows of *this.
Template Parameters
Nthe number of rows in the block as specified at compile-time
Parameters
nthe number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows<2>():
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int N>
ConstNRowsBlockXpr<N>::Type Eigen::DenseBase< Derived >::bottomRows ( Index  n = N) const
inlineinherited

This is the const version of bottomRows<int>().

template<typename Derived>
template<typename NewType >
CastXpr<NewType>::Type Eigen::ArrayBase< Derived >::cast ( ) const
inline
Returns
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also
class CwiseUnaryOp
template<typename Derived>
const CeilReturnType Eigen::ArrayBase< Derived >::ceil ( ) const
inline
Returns
an expression of the coefficient-wise ceil of *this.

Example:

ArrayXd v = ArrayXd::LinSpaced(7,-2,2);
cout << v << endl << endl;
cout << ceil(v) << endl;

Output:

    -2
 -1.33
-0.667
     0
 0.667
  1.33
     2

-2
-1
-0
 0
 1
 2
 2
See also
floor(), round()
template<typename Derived>
ColXpr Eigen::DenseBase< Derived >::col ( Index  i)
inlineinherited
Returns
an expression of the i-th column of *this. Note that the numbering starts at 0.

Example:

m.col(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 4 0
0 5 0
0 6 1
See also
row(), class Block
template<typename Derived>
ConstColXpr Eigen::DenseBase< Derived >::col ( Index  i) const
inlineinherited

This is the const version of col().

template<typename Derived>
ConstColwiseReturnType Eigen::DenseBase< Derived >::colwise ( ) const
inlineinherited
Returns
a VectorwiseOp wrapper of *this providing additional partial reduction operations

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the sum of each column:" << endl << m.colwise().sum() << endl;
cout << "Here is the maximum absolute value of each column:"
<< endl << m.cwiseAbs().colwise().maxCoeff() << endl;

Output:

Here is the matrix m:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the sum of each column:
  1.04  0.815 -0.238
Here is the maximum absolute value of each column:
 0.68 0.823 0.536
See also
rowwise(), class VectorwiseOp, Reductions, visitors and broadcasting
template<typename Derived >
DenseBase< Derived >::ColwiseReturnType Eigen::DenseBase< Derived >::colwise ( )
inlineinherited
Returns
a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
See also
rowwise(), class VectorwiseOp, Reductions, visitors and broadcasting
template<typename Derived>
ConjugateReturnType Eigen::ArrayBase< Derived >::conjugate ( ) const
inline
Returns
an expression of the complex conjugate of *this.
See also
adjoint()
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Constant ( Index  rows,
Index  cols,
const Scalar value 
)
inlinestaticinherited
Returns
an expression of a constant matrix of value value

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this DenseBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

See also
class CwiseNullaryOp
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Constant ( Index  size,
const Scalar value 
)
inlinestaticinherited
Returns
an expression of a constant matrix of value value

The parameter size is the size of the returned vector. Must be compatible with this DenseBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

See also
class CwiseNullaryOp
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Constant ( const Scalar value)
inlinestaticinherited
Returns
an expression of a constant matrix of value value

This variant is only for fixed-size DenseBase types. For dynamic-size types, you need to use the variants taking size arguments.

The template parameter CustomNullaryOp is the type of the functor.

See also
class CwiseNullaryOp
template<typename Derived>
const CosReturnType Eigen::ArrayBase< Derived >::cos ( ) const
inline
Returns
an expression of the coefficient-wise cosine of *this.

This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the unsupported module MatrixFunctions computes the matrix cosine.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.cos() << endl;

Output:

      -1
6.12e-17
     0.5
See also
sin(), acos()
template<typename Derived>
const CoshReturnType Eigen::ArrayBase< Derived >::cosh ( ) const
inline
Returns
an expression of the coefficient-wise hyperbolic cos of *this.

Example:

ArrayXd v = ArrayXd::LinSpaced(5,0,1);
cout << cosh(v) << endl;

Output:

   1
1.03
1.13
1.29
1.54
See also
tan(), sinh(), cosh()
template<typename Derived >
Eigen::Index Eigen::DenseBase< Derived >::count ( ) const
inlineinherited
Returns
the number of coefficients which evaluate to true
See also
all(), any()
template<typename Derived>
const CubeReturnType Eigen::ArrayBase< Derived >::cube ( ) const
inline
Returns
an expression of the coefficient-wise cube of *this.

Example:

Array3d v(2,3,4);
cout << v.cube() << endl;

Output:

 8
27
64
See also
square(), pow()
template<typename Derived>
const CwiseAbsReturnType Eigen::ArrayBase< Derived >::cwiseAbs ( ) const
inline
Returns
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See also
cwiseAbs2()
template<typename Derived>
const CwiseAbs2ReturnType Eigen::ArrayBase< Derived >::cwiseAbs2 ( ) const
inline
Returns
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See also
cwiseAbs()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::cwiseEqual ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise == operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See also
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
template<typename Derived>
const CwiseScalarEqualReturnType Eigen::ArrayBase< Derived >::cwiseEqual ( const Scalar s) const
inline
Returns
an expression of the coefficient-wise == operator of *this and a scalar s
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also
cwiseEqual(const MatrixBase<OtherDerived> &) const
template<typename Derived>
const CwiseInverseReturnType Eigen::ArrayBase< Derived >::cwiseInverse ( ) const
inline
Returns
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,
3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

  0.5     2     1
0.333     4     1
See also
cwiseProduct()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::cwiseMax ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See also
class CwiseBinaryOp, min()
template<typename Derived>
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType> Eigen::ArrayBase< Derived >::cwiseMax ( const Scalar other) const
inline
Returns
an expression of the coefficient-wise max of *this and scalar other
See also
class CwiseBinaryOp, min()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::cwiseMin ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See also
class CwiseBinaryOp, max()
template<typename Derived>
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType> Eigen::ArrayBase< Derived >::cwiseMin ( const Scalar other) const
inline
Returns
an expression of the coefficient-wise min of *this and scalar other
See also
class CwiseBinaryOp, min()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::cwiseNotEqual ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise != operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See also
cwiseEqual(), isApprox(), isMuchSmallerThan()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_product_op<typename Derived ::Scalar, typename OtherDerived ::Scalar >, const Derived , const OtherDerived > Eigen::ArrayBase< Derived >::cwiseProduct ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See also
class CwiseBinaryOp, cwiseAbs2
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::cwiseQuotient ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

 0.5
 1.5
1.33
See also
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
template<typename Derived>
const CwiseSignReturnType Eigen::ArrayBase< Derived >::cwiseSign ( ) const
inline
Returns
an expression of the coefficient-wise signum of *this.

Example:

Output:

 
template<typename Derived>
const CwiseSqrtReturnType Eigen::ArrayBase< Derived >::cwiseSqrt ( ) const
inline
Returns
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

   1
1.41
   2
See also
cwisePow(), cwiseSquare()
template<typename Derived>
const ErfReturnType Eigen::ArrayBase< Derived >::erf ( ) const
inline
Returns
an expression of the coefficient-wise Gauss error function of *this.

Example:

Output:

See also
cos(), sin(), tan()
template<typename Derived>
const ErfcReturnType Eigen::ArrayBase< Derived >::erfc ( ) const
inline
Returns
an expression of the coefficient-wise Complementary error function of *this.

Example:

Output:

See also
cos(), sin(), tan()
template<typename Derived>
EvalReturnType Eigen::DenseBase< Derived >::eval ( ) const
inlineinherited
Returns
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

Warning
Be carefull with eval() and the auto C++ keyword, as detailed in this page .
template<typename Derived>
const ExpReturnType Eigen::ArrayBase< Derived >::exp ( ) const
inline
Returns
an expression of the coefficient-wise exponential of *this.

This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the unsupported module MatrixFunctions computes the matrix exponential.

Example:

Array3d v(1,2,3);
cout << v.exp() << endl;

Output:

2.72
7.39
20.1
See also
pow(), log(), sin(), cos()
template<typename Derived >
void Eigen::DenseBase< Derived >::fill ( const Scalar val)
inlineinherited

Alias for setConstant(): sets all coefficients in this expression to val.

See also
setConstant(), Constant(), class CwiseNullaryOp
template<typename Derived>
template<unsigned int Added, unsigned int Removed>
EIGEN_DEPRECATED const Derived& Eigen::DenseBase< Derived >::flagged ( ) const
inlineinherited
Deprecated:
it now returns *this
template<typename Derived>
const FloorReturnType Eigen::ArrayBase< Derived >::floor ( ) const
inline
Returns
an expression of the coefficient-wise floor of *this.

Example:

ArrayXd v = ArrayXd::LinSpaced(7,-2,2);
cout << v << endl << endl;
cout << floor(v) << endl;

Output:

    -2
 -1.33
-0.667
     0
 0.667
  1.33
     2

-2
-2
-1
 0
 0
 1
 2
See also
ceil(), round()
template<typename Derived >
const WithFormat< Derived > Eigen::DenseBase< Derived >::format ( const IOFormat fmt) const
inlineinherited
Returns
a WithFormat proxy object allowing to print a matrix the with given format fmt.

See class IOFormat for some examples.

See also
class IOFormat, class WithFormat
template<typename Derived >
bool Eigen::DenseBase< Derived >::hasNaN ( ) const
inlineinherited
Returns
true is *this contains at least one Not A Number (NaN).
See also
allFinite()
template<typename Derived>
SegmentReturnType Eigen::DenseBase< Derived >::head ( Index  n)
inlineinherited
Returns
a dynamic-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters
nthe number of coefficients in the segment

Example:

cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head(2) << endl;
v.head(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, block(Index,Index)
template<typename Derived>
ConstSegmentReturnType Eigen::DenseBase< Derived >::head ( Index  n) const
inlineinherited

This is the const version of head(Index).

template<typename Derived>
template<int N>
FixedSegmentReturnType<N>::Type Eigen::DenseBase< Derived >::head ( Index  n = N)
inlineinherited
Returns
a fixed-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters
Nthe number of coefficients in the segment as specified at compile-time
Parameters
nthe number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head<2>() << endl;
v.head<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
See also
class Block
template<typename Derived>
template<int N>
ConstFixedSegmentReturnType<N>::Type Eigen::DenseBase< Derived >::head ( Index  n = N) const
inlineinherited

This is the const version of head<int>().

template<typename Derived>
const ImagReturnType Eigen::ArrayBase< Derived >::imag ( ) const
inline
Returns
an read-only expression of the imaginary part of *this.
See also
real()
template<typename Derived>
NonConstImagReturnType Eigen::ArrayBase< Derived >::imag ( )
inline
Returns
a non const expression of the imaginary part of *this.
See also
real()
template<typename Derived>
Index Eigen::DenseBase< Derived >::innerSize ( ) const
inlineinherited
Returns
the inner size.
Note
For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension with respect to the storage order, i.e., the number of rows for a column-major matrix, and the number of columns for a row-major matrix.
template<typename Derived>
const InverseReturnType Eigen::ArrayBase< Derived >::inverse ( ) const
inline
Returns
an expression of the coefficient-wise inverse of *this.

Example:

Array3d v(2,3,4);
cout << v.inverse() << endl;

Output:

  0.5
0.333
 0.25
See also
operator/(), operator*()
template<typename Derived >
template<typename OtherDerived >
bool Eigen::DenseBase< Derived >::isApprox ( const DenseBase< OtherDerived > &  other,
const RealScalar &  prec = NumTraits<Scalar>::dummy_precision() 
) const
inherited
Returns
true if *this is approximately equal to other, within the precision determined by prec.
Note
The fuzzy compares are done multiplicatively. Two vectors $ v $ and $ w $ are considered to be approximately equal within precision $ p $ if

\[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \]

For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm L2 norm).
Because of the multiplicativeness of this comparison, one can't use this function to check whether *this is approximately equal to the zero matrix or vector. Indeed, isApprox(zero) returns false unless *this itself is exactly the zero matrix or vector. If you want to test whether *this is zero, use internal::isMuchSmallerThan(const RealScalar&, RealScalar) instead.
See also
internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
template<typename Derived >
bool Eigen::DenseBase< Derived >::isApproxToConstant ( const Scalar val,
const RealScalar &  prec = NumTraits<Scalar>::dummy_precision() 
) const
inherited
Returns
true if all coefficients in this matrix are approximately equal to val, to within precision prec
template<typename Derived >
bool Eigen::DenseBase< Derived >::isConstant ( const Scalar val,
const RealScalar &  prec = NumTraits<Scalar>::dummy_precision() 
) const
inherited

This is just an alias for isApproxToConstant().

Returns
true if all coefficients in this matrix are approximately equal to value, to within precision prec
template<typename Derived>
const IsFiniteReturnType Eigen::ArrayBase< Derived >::isFinite ( ) const
inline
Returns
an expression of the coefficient-wise isfinite of *this.

Example:

Array3d v(1,2,3);
v(1) *= 0.0/0.0;
v(2) /= 0.0;
cout << v << endl << endl;
cout << isfinite(v) << endl;

Output:

  1
nan
inf

1
0
0
See also
isnan(), isinf()
template<typename Derived>
const IsInfReturnType Eigen::ArrayBase< Derived >::isInf ( ) const
inline
Returns
an expression of the coefficient-wise isinf of *this.

Example:

Array3d v(1,2,3);
v(1) *= 0.0/0.0;
v(2) /= 0.0;
cout << v << endl << endl;
cout << isinf(v) << endl;

Output:

  1
nan
inf

0
0
1
See also
isnan(), isfinite()
template<typename Derived>
template<typename Derived >
bool Eigen::DenseBase< Derived >::isMuchSmallerThan ( const typename NumTraits< Scalar >::Real &  other,
const RealScalar &  prec 
) const
inherited
Returns
true if the norm of *this is much smaller than other, within the precision determined by prec.
Note
The fuzzy compares are done multiplicatively. A vector $ v $ is considered to be much smaller than $ x $ within precision $ p $ if

\[ \Vert v \Vert \leqslant p\,\vert x\vert. \]

For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason, the value of the reference scalar other should come from the Hilbert-Schmidt norm of a reference matrix of same dimensions.

See also
isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
template<typename Derived >
template<typename OtherDerived >
bool Eigen::DenseBase< Derived >::isMuchSmallerThan ( const DenseBase< OtherDerived > &  other,
const RealScalar &  prec = NumTraits<Scalar>::dummy_precision() 
) const
inherited
Returns
true if the norm of *this is much smaller than the norm of other, within the precision determined by prec.
Note
The fuzzy compares are done multiplicatively. A vector $ v $ is considered to be much smaller than a vector $ w $ within precision $ p $ if

\[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \]

For matrices, the comparison is done using the Hilbert-Schmidt norm.
See also
isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
template<typename Derived>
const IsNaNReturnType Eigen::ArrayBase< Derived >::isNaN ( ) const
inline
Returns
an expression of the coefficient-wise isnan of *this.

Example:

Array3d v(1,2,3);
v(1) *= 0.0/0.0;
v(2) /= 0.0;
cout << v << endl << endl;
cout << isnan(v) << endl;

Output:

  1
nan
inf

0
1
0
See also
isfinite(), isinf()
template<typename Derived >
bool Eigen::DenseBase< Derived >::isOnes ( const RealScalar &  prec = NumTraits<Scalar>::dummy_precision()) const
inherited
Returns
true if *this is approximately equal to the matrix where all coefficients are equal to 1, within the precision given by prec.

Example:

m(0,2) += 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isOnes() returns: " << m.isOnes() << endl;
cout << "m.isOnes(1e-3) returns: " << m.isOnes(1e-3) << endl;

Output:

Here's the matrix m:
1 1 1
1 1 1
1 1 1
m.isOnes() returns: 0
m.isOnes(1e-3) returns: 1
See also
class CwiseNullaryOp, Ones()
template<typename Derived >
bool Eigen::DenseBase< Derived >::isZero ( const RealScalar &  prec = NumTraits<Scalar>::dummy_precision()) const
inherited
Returns
true if *this is approximately equal to the zero matrix, within the precision given by prec.

Example:

m(0,2) = 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isZero() returns: " << m.isZero() << endl;
cout << "m.isZero(1e-3) returns: " << m.isZero(1e-3) << endl;

Output:

Here's the matrix m:
     0      0 0.0001
     0      0      0
     0      0      0
m.isZero() returns: 0
m.isZero(1e-3) returns: 1
See also
class CwiseNullaryOp, Zero()
template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::DenseBase< Derived >::lazyAssign ( const DenseBase< OtherDerived > &  other)
inlineinherited

\ínternal Copies other into *this without evaluating other.

Returns
a reference to *this.
Deprecated:
template<typename Derived>
ColsBlockXpr Eigen::DenseBase< Derived >::leftCols ( Index  n)
inlineinherited
Returns
a block consisting of the left columns of *this.
Parameters
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols(2):
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
ConstColsBlockXpr Eigen::DenseBase< Derived >::leftCols ( Index  n) const
inlineinherited

This is the const version of leftCols(Index).

template<typename Derived>
template<int N>
NColsBlockXpr<N>::Type Eigen::DenseBase< Derived >::leftCols ( Index  n = N)
inlineinherited
Returns
a block consisting of the left columns of *this.
Template Parameters
Nthe number of columns in the block as specified at compile-time
Parameters
nthe number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols<2>():" << endl;
cout << a.leftCols<2>() << endl;
a.leftCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols<2>():
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int N>
ConstNColsBlockXpr<N>::Type Eigen::DenseBase< Derived >::leftCols ( Index  n = N) const
inlineinherited

This is the const version of leftCols<int>().

template<typename Derived>
const LgammaReturnType Eigen::ArrayBase< Derived >::lgamma ( ) const
inline
Returns
an expression of the coefficient-wise ln(|gamma(*this)|).

Example:

Output:

See also
cos(), sin(), tan()
template<typename Derived >
const DenseBase< Derived >::SequentialLinSpacedReturnType Eigen::DenseBase< Derived >::LinSpaced ( Sequential_t  ,
Index  size,
const Scalar low,
const Scalar high 
)
inlinestaticinherited

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. This particular version of LinSpaced() uses sequential access, i.e. vector access is assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization and yields faster code than the random access version.

When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

cout << VectorXi::LinSpaced(Sequential,4,7,10).transpose() << endl;
cout << VectorXd::LinSpaced(Sequential,5,0.0,1.0).transpose() << endl;

Output:

 7  8  9 10
   0 0.25  0.5 0.75    1
See also
setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
template<typename Derived >
const DenseBase< Derived >::RandomAccessLinSpacedReturnType Eigen::DenseBase< Derived >::LinSpaced ( Index  size,
const Scalar low,
const Scalar high 
)
inlinestaticinherited

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

cout << VectorXi::LinSpaced(4,7,10).transpose() << endl;
cout << VectorXd::LinSpaced(5,0.0,1.0).transpose() << endl;

Output:

 7  8  9 10
   0 0.25  0.5 0.75    1
See also
setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
template<typename Derived >
const DenseBase< Derived >::SequentialLinSpacedReturnType Eigen::DenseBase< Derived >::LinSpaced ( Sequential_t  ,
const Scalar low,
const Scalar high 
)
inlinestaticinherited

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. This particular version of LinSpaced() uses sequential access, i.e. vector access is assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization and yields faster code than the random access version.

When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

cout << VectorXi::LinSpaced(Sequential,4,7,10).transpose() << endl;
cout << VectorXd::LinSpaced(Sequential,5,0.0,1.0).transpose() << endl;

Output:

 7  8  9 10
   0 0.25  0.5 0.75    1
See also
setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp Special version for fixed size types which does not require the size parameter.
template<typename Derived >
const DenseBase< Derived >::RandomAccessLinSpacedReturnType Eigen::DenseBase< Derived >::LinSpaced ( const Scalar low,
const Scalar high 
)
inlinestaticinherited

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

cout << VectorXi::LinSpaced(4,7,10).transpose() << endl;
cout << VectorXd::LinSpaced(5,0.0,1.0).transpose() << endl;

Output:

 7  8  9 10
   0 0.25  0.5 0.75    1
See also
setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp Special version for fixed size types which does not require the size parameter.
template<typename Derived>
const LogReturnType Eigen::ArrayBase< Derived >::log ( ) const
inline
Returns
an expression of the coefficient-wise logarithm of *this.

This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the unsupported module MatrixFunctions computes the matrix logarithm.

Example:

Array3d v(1,2,3);
cout << v.log() << endl;

Output:

    0
0.693
  1.1
See also
exp()
template<typename Derived>
const Log10ReturnType Eigen::ArrayBase< Derived >::log10 ( ) const
inline
Returns
an expression of the coefficient-wise base-10 logarithm of *this.

This function computes the coefficient-wise base-10 logarithm.

Example:

Array4d v(-1,0,1,2);
cout << log10(v) << endl;

Output:

  nan
 -inf
    0
0.301
See also
log()
template<typename Derived>
MatrixWrapper<Derived> Eigen::ArrayBase< Derived >::matrix ( )
inline
Returns
an Matrix expression of this array
See also
MatrixBase::array()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_max_op <Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::max ( const Eigen::ArrayBase< OtherDerived > &  other) const
Returns
an expression of the coefficient-wise max of *this and other

Example:

Array3d v(2,3,4), w(4,2,3);
cout << v.max(w) << endl;

Output:

4
3
4
See also
min()
template<typename Derived>
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > Eigen::ArrayBase< Derived >::max ( const Scalar other) const
inline
Returns
an expression of the coefficient-wise max of *this and scalar other
See also
min()
template<typename Derived>
template<typename IndexType >
internal::traits<Derived>::Scalar Eigen::DenseBase< Derived >::maxCoeff ( IndexType *  rowPtr,
IndexType *  colPtr 
) const
inherited
Returns
the maximum of all coefficients of *this and puts in *row and *col its location.
Warning
the result is undefined if *this contains NaN.
See also
DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
template<typename Derived>
template<typename IndexType >
internal::traits<Derived>::Scalar Eigen::DenseBase< Derived >::maxCoeff ( IndexType *  index) const
inherited
Returns
the maximum of all coefficients of *this and puts in *index its location.
Warning
the result is undefined if *this contains NaN.
See also
DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
template<typename Derived >
internal::traits< Derived >::Scalar Eigen::DenseBase< Derived >::maxCoeff ( ) const
inlineinherited
Returns
the maximum of all coefficients of *this.
Warning
the result is undefined if *this contains NaN.
template<typename Derived >
internal::traits< Derived >::Scalar Eigen::DenseBase< Derived >::mean ( ) const
inlineinherited
Returns
the mean of all coefficients of *this
See also
trace(), prod(), sum()
template<typename Derived>
ColsBlockXpr Eigen::DenseBase< Derived >::middleCols ( Index  startCol,
Index  numCols 
)
inlineinherited
Returns
a block consisting of a range of columns of *this.
Parameters
startColthe index of the first column in the block
numColsthe number of columns in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
ConstColsBlockXpr Eigen::DenseBase< Derived >::middleCols ( Index  startCol,
Index  numCols 
) const
inlineinherited

This is the const version of middleCols(Index,Index).

template<typename Derived>
template<int N>
NColsBlockXpr<N>::Type Eigen::DenseBase< Derived >::middleCols ( Index  startCol,
Index  n = N 
)
inlineinherited
Returns
a block consisting of a range of columns of *this.
Template Parameters
Nthe number of columns in the block as specified at compile-time
Parameters
startColthe index of the first column in the block
nthe number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(:,1..3) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int N>
ConstNColsBlockXpr<N>::Type Eigen::DenseBase< Derived >::middleCols ( Index  startCol,
Index  n = N 
) const
inlineinherited

This is the const version of middleCols<int>().

template<typename Derived>
RowsBlockXpr Eigen::DenseBase< Derived >::middleRows ( Index  startRow,
Index  n 
)
inlineinherited
Returns
a block consisting of a range of rows of *this.
Parameters
startRowthe index of the first row in the block
nthe number of rows in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(2..3,:) =
 6  6 -3  5 -8
 6 -5  0 -8  6
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
ConstRowsBlockXpr Eigen::DenseBase< Derived >::middleRows ( Index  startRow,
Index  n 
) const
inlineinherited

This is the const version of middleRows(Index,Index).

template<typename Derived>
template<int N>
NRowsBlockXpr<N>::Type Eigen::DenseBase< Derived >::middleRows ( Index  startRow,
Index  n = N 
)
inlineinherited
Returns
a block consisting of a range of rows of *this.
Template Parameters
Nthe number of rows in the block as specified at compile-time
Parameters
startRowthe index of the first row in the block
nthe number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-2 -3  3  3 -5
 6  6 -3  5 -8
 6 -5  0 -8  6
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int N>
ConstNRowsBlockXpr<N>::Type Eigen::DenseBase< Derived >::middleRows ( Index  startRow,
Index  n = N 
) const
inlineinherited

This is the const version of middleRows<int>().

template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_min_op <Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::min ( const Eigen::ArrayBase< OtherDerived > &  other) const
Returns
an expression of the coefficient-wise min of *this and other

Example:

Array3d v(2,3,4), w(4,2,3);
cout << v.min(w) << endl;

Output:

2
2
3
See also
max()
template<typename Derived>
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > Eigen::ArrayBase< Derived >::min ( const Scalar other) const
inline
Returns
an expression of the coefficient-wise min of *this and scalar other
See also
max()
template<typename Derived>
template<typename IndexType >
internal::traits<Derived>::Scalar Eigen::DenseBase< Derived >::minCoeff ( IndexType *  rowId,
IndexType *  colId 
) const
inherited
Returns
the minimum of all coefficients of *this and puts in *row and *col its location.
Warning
the result is undefined if *this contains NaN.
See also
DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visitor(), DenseBase::minCoeff()
template<typename Derived>
template<typename IndexType >
internal::traits<Derived>::Scalar Eigen::DenseBase< Derived >::minCoeff ( IndexType *  index) const
inherited
Returns
the minimum of all coefficients of *this and puts in *index its location.
Warning
the result is undefined if *this contains NaN.
See also
DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::minCoeff()
template<typename Derived >
internal::traits< Derived >::Scalar Eigen::DenseBase< Derived >::minCoeff ( ) const
inlineinherited
Returns
the minimum of all coefficients of *this.
Warning
the result is undefined if *this contains NaN.
template<typename Derived >
const NestByValue< Derived > Eigen::DenseBase< Derived >::nestByValue ( ) const
inlineinherited
Returns
an expression of the temporary version of *this.
template<typename Derived>
Index Eigen::DenseBase< Derived >::nonZeros ( ) const
inlineinherited
Returns
the number of nonzero coefficients which is in practice the number of stored coefficients.
template<typename Derived>
template<typename CustomNullaryOp >
const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject> Eigen::DenseBase< Derived >::NullaryExpr ( Index  rows,
Index  cols,
const CustomNullaryOp &  func 
)
inlineinherited
Returns
an expression of a matrix defined by a custom functor func

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

See also
class CwiseNullaryOp
template<typename Derived>
template<typename CustomNullaryOp >
const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject> Eigen::DenseBase< Derived >::NullaryExpr ( Index  size,
const CustomNullaryOp &  func 
)
inlineinherited
Returns
an expression of a matrix defined by a custom functor func

The parameter size is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Zero() should be used instead.

The template parameter CustomNullaryOp is the type of the functor.

Here is an example with C++11 random generators:

#include <Eigen/Core>
#include <iostream>
#include <random>
using namespace Eigen;
int main() {
std::default_random_engine generator;
std::poisson_distribution<int> distribution(4.1);
auto poisson = [&] (Eigen::Index) {return distribution(generator);};
RowVectorXi v = RowVectorXi::NullaryExpr(10, poisson );
std::cout << v << "\n";
}

Output:

2 3 1 4 3 4 4 3 2 3
See also
class CwiseNullaryOp
template<typename Derived>
template<typename CustomNullaryOp >
const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject> Eigen::DenseBase< Derived >::NullaryExpr ( const CustomNullaryOp &  func)
inlineinherited
Returns
an expression of a matrix defined by a custom functor func

This variant is only for fixed-size DenseBase types. For dynamic-size types, you need to use the variants taking size arguments.

The template parameter CustomNullaryOp is the type of the functor.

See also
class CwiseNullaryOp
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Ones ( Index  rows,
Index  cols 
)
inlinestaticinherited
Returns
an expression of a matrix where all coefficients equal one.

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Ones() should be used instead.

Example:

cout << MatrixXi::Ones(2,3) << endl;

Output:

1 1 1
1 1 1
See also
Ones(), Ones(Index), isOnes(), class Ones
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Ones ( Index  newSize)
inlinestaticinherited
Returns
an expression of a vector where all coefficients equal one.

The parameter newSize is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Ones() should be used instead.

Example:

cout << 6 * RowVectorXi::Ones(4) << endl;
cout << VectorXf::Ones(2) << endl;

Output:

6 6 6 6
1
1
See also
Ones(), Ones(Index,Index), isOnes(), class Ones
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Ones ( )
inlinestaticinherited
Returns
an expression of a fixed-size matrix or vector where all coefficients equal one.

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variants taking size arguments.

Example:

cout << Matrix2d::Ones() << endl;
cout << 6 * RowVector4i::Ones() << endl;

Output:

1 1
1 1
6 6 6 6
See also
Ones(Index), Ones(Index,Index), isOnes(), class Ones
template<typename Derived>
const BooleanNotReturnType Eigen::ArrayBase< Derived >::operator! ( ) const
inline
Returns
an expression of the coefficient-wise ! operator of *this
Warning
this operator is for expression of bool only.

Example:

Array3d v(1,2,3);
v(1) *= 0.0/0.0;
v(2) /= 0.0;
cout << v << endl << endl;
cout << !isfinite(v) << endl;

Output:

  1
nan
inf

0
1
1
See also
operator!=()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_boolean_and_op, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::operator&& ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise && operator of *this and other
Warning
this operator is for expression of bool only.

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) && (v<0)) << endl;

Output:

0
0
0
See also
operator||(), select()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_product_op<typename Derived ::Scalar, typename OtherDerived ::Scalar >, const Derived , const OtherDerived > Eigen::ArrayBase< Derived >::operator* ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient wise product of *this and other
See also
MatrixBase::cwiseProduct
template<typename Derived>
const ScalarMultipleReturnType Eigen::ArrayBase< Derived >::operator* ( const Scalar scalar) const
inline
Returns
an expression of *this scaled by the scalar factor scalar
template<typename Derived>
const ScalarComplexMultipleReturnType Eigen::ArrayBase< Derived >::operator* ( const std::complex< Scalar > &  scalar) const
inline

Overloaded for efficient real matrix times complex scalar value

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::ArrayBase< Derived >::operator*= ( const ArrayBase< OtherDerived > &  other)
inline

replaces *this by *this * other coefficient wise.

Returns
a reference to *this
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_sum_op <Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::operator+ ( const Eigen::ArrayBase< OtherDerived > &  other) const
Returns
an expression of the sum of *this and other
Note
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also
class CwiseBinaryOp, operator+=()
template<typename Derived>
const CwiseUnaryOp<internal::scalar_add_op<Scalar>, const Derived> Eigen::ArrayBase< Derived >::operator+ ( const Scalar scalar) const
inline
Returns
an expression of the coefficient-wise < operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v<w) << endl;

Output:

1
0
0
See also
all(), any(), operator>(), operator<=()
Returns
an expression of the coefficient-wise <= operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v<=w) << endl;

Output:

1
1
0
See also
all(), any(), operator>=(), operator<()
Returns
an expression of the coefficient-wise > operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v>w) << endl;

Output:

0
0
1
See also
all(), any(), operator>=(), operator<()
Returns
an expression of the coefficient-wise >= operator of *this and other

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v>=w) << endl;

Output:

0
1
1
See also
all(), any(), operator>(), operator<=()
Returns
an expression of the coefficient-wise == operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v==w) << endl;

Output:

0
1
0
See also
all(), any(), isApprox(), isMuchSmallerThan()
Returns
an expression of the coefficient-wise != operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

Array3d v(1,2,3), w(3,2,1);
cout << (v!=w) << endl;

Output:

1
0
1
See also
all(), any(), isApprox(), isMuchSmallerThan()
Returns
an expression of *this with each coeff incremented by the constant scalar

Example:

Array3d v(1,2,3);
cout << v+5 << endl;

Output:

6
7
8
See also
operator+=(), operator-()
template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::ArrayBase< Derived >::operator+= ( const ArrayBase< OtherDerived > &  other)
inline

replaces *this by *this + other.

Returns
a reference to *this
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp< internal::scalar_difference_op <Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::operator- ( const Eigen::ArrayBase< OtherDerived > &  other) const
Returns
an expression of the difference of *this and other
Note
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also
class CwiseBinaryOp, operator-=()
template<typename Derived>
const NegativeReturnType Eigen::ArrayBase< Derived >::operator- ( ) const
inline
Returns
an expression of the opposite of *this
template<typename Derived>
const CwiseUnaryOp<internal::scalar_sub_op<Scalar>, const Derived> Eigen::ArrayBase< Derived >::operator- ( const Scalar scalar) const
inline
Returns
an expression of *this with each coeff decremented by the constant scalar

Example:

Array3d v(1,2,3);
cout << v-5 << endl;

Output:

-4
-3
-2
See also
operator+(), operator-=()
template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::ArrayBase< Derived >::operator-= ( const ArrayBase< OtherDerived > &  other)
inline

replaces *this by *this - other.

Returns
a reference to *this
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::operator/ ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient wise quotient of *this and other
See also
MatrixBase::cwiseQuotient
template<typename Derived>
const ScalarQuotient1ReturnType Eigen::ArrayBase< Derived >::operator/ ( const Scalar scalar) const
inline
Returns
an expression of *this divided by the scalar value scalar
template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::ArrayBase< Derived >::operator/= ( const ArrayBase< OtherDerived > &  other)
inline

replaces *this by *this / other coefficient wise.

Returns
a reference to *this
template<typename Derived >
CommaInitializer< Derived > Eigen::DenseBase< Derived >::operator<< ( const Scalar s)
inlineinherited

Convenient operator to set the coefficients of a matrix.

The coefficients must be provided in a row major order and exactly match the size of the matrix. Otherwise an assertion is raised.

Example:

m1 << 1, 2, 3,
4, 5, 6,
7, 8, 9;
cout << m1 << endl << endl;
m2.block(0,0, 2,2) << 10, 11, 12, 13;
cout << m2 << endl << endl;
v1 << 14, 15;
m2 << v1.transpose(), 16,
v1, m1.block(1,1,2,2);
cout << m2 << endl;

Output:

1 2 3
4 5 6
7 8 9

10 11  0
12 13  0
 0  0  1

14 15 16
14  5  6
15  8  9
Note
According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
See also
CommaInitializer::finished(), class CommaInitializer
template<typename Derived >
template<typename OtherDerived >
CommaInitializer< Derived > Eigen::DenseBase< Derived >::operator<< ( const DenseBase< OtherDerived > &  other)
inlineinherited
template<typename Derived>
Derived& Eigen::ArrayBase< Derived >::operator= ( const ArrayBase< Derived > &  other)
inline

Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)

template<typename Derived>
Derived& Eigen::ArrayBase< Derived >::operator= ( const Scalar value)
inline

Set all the entries to value.

See also
DenseBase::setConstant(), DenseBase::fill()
template<typename Derived>
template<typename OtherDerived >
const CwiseBinaryOp<internal::scalar_boolean_or_op, const Derived, const OtherDerived> Eigen::ArrayBase< Derived >::operator|| ( const Eigen::ArrayBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise || operator of *this and other
Warning
this operator is for expression of bool only.

Example:

Array3d v(-1,2,1), w(-3,2,3);
cout << ((v<w) || (v<0)) << endl;

Output:

1
0
1
See also
operator&&(), select()
template<typename Derived>
Index Eigen::DenseBase< Derived >::outerSize ( ) const
inlineinherited
Returns
the outer size.
Note
For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension with respect to the storage order, i.e., the number of columns for a column-major matrix, and the number of rows for a row-major matrix.
template<typename Derived>
template<typename ExponentDerived >
const CwiseBinaryOp<internal::scalar_binary_pow_op<Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived> Eigen::ArrayBase< Derived >::pow ( const ArrayBase< ExponentDerived > &  exponents) const
inline
Returns
an expression of the coefficient-wise power of *this to the given array of exponents.

This function computes the coefficient-wise power.

Example:

Array<double,1,3> x(8,25,3),
e(1./3.,0.5,2.);
cout << "[" << x << "]^[" << e << "] = " << x.pow(e) << endl; // using ArrayBase::pow
cout << "[" << x << "]^[" << e << "] = " << pow(x,e) << endl; // using Eigen::pow

Output:

[ 8 25  3]^[0.333   0.5     2] = 2 5 9
[ 8 25  3]^[0.333   0.5     2] = 2 5 9
template<typename Derived>
const PowReturnType Eigen::ArrayBase< Derived >::pow ( const Scalar exponent) const
inline
Returns
an expression of the coefficient-wise power of *this to the given exponent.

This function computes the coefficient-wise power. The function MatrixBase::pow() in the unsupported module MatrixFunctions computes the matrix power.

Example:

Array3d v(8,27,64);
cout << v.pow(0.333333) << endl;

Output:

2
3
4
See also
exp(), log()
template<typename Derived >
internal::traits< Derived >::Scalar Eigen::DenseBase< Derived >::prod ( ) const
inlineinherited
Returns
the product of all coefficients of *this

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the product of all the coefficients:" << endl << m.prod() << endl;

Output:

Here is the matrix m:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the product of all the coefficients:
0.0019
See also
sum(), mean(), trace()
template<typename Derived >
const DenseBase< Derived >::RandomReturnType Eigen::DenseBase< Derived >::Random ( Index  rows,
Index  cols 
)
inlinestaticinherited
Returns
a random matrix expression

Numbers are uniformly spread through their whole definition range for integer types, and in the [-1:1] range for floating point scalar types.

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

Warning
This function is not re-entrant.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Random() should be used instead.

Example:

cout << MatrixXi::Random(2,3) << endl;

Output:

 7  6  9
-2  6 -6

This expression has the "evaluate before nesting" flag so that it will be evaluated into a temporary matrix whenever it is nested in a larger expression. This prevents unexpected behavior with expressions involving random matrices.

See DenseBase::NullaryExpr(Index, const CustomNullaryOp&) for an example using C++11 random generators.

See also
DenseBase::setRandom(), DenseBase::Random(Index), DenseBase::Random()
template<typename Derived >
const DenseBase< Derived >::RandomReturnType Eigen::DenseBase< Derived >::Random ( Index  size)
inlinestaticinherited
Returns
a random vector expression

Numbers are uniformly spread through their whole definition range for integer types, and in the [-1:1] range for floating point scalar types.

The parameter size is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Warning
This function is not re-entrant.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Random() should be used instead.

Example:

cout << VectorXi::Random(2) << endl;

Output:

 7
-2

This expression has the "evaluate before nesting" flag so that it will be evaluated into a temporary vector whenever it is nested in a larger expression. This prevents unexpected behavior with expressions involving random matrices.

See also
DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random()
template<typename Derived >
const DenseBase< Derived >::RandomReturnType Eigen::DenseBase< Derived >::Random ( )
inlinestaticinherited
Returns
a fixed-size random matrix or vector expression

Numbers are uniformly spread through their whole definition range for integer types, and in the [-1:1] range for floating point scalar types.

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variants taking size arguments.

Example:

cout << 100 * Matrix2i::Random() << endl;

Output:

 700  600
-200  600

This expression has the "evaluate before nesting" flag so that it will be evaluated into a temporary matrix whenever it is nested in a larger expression. This prevents unexpected behavior with expressions involving random matrices.

Warning
This function is not re-entrant.
See also
DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random(Index)
template<typename Derived>
RealReturnType Eigen::ArrayBase< Derived >::real ( ) const
inline
Returns
a read-only expression of the real part of *this.
See also
imag()
template<typename Derived>
NonConstRealReturnType Eigen::ArrayBase< Derived >::real ( )
inline
Returns
a non const expression of the real part of *this.
See also
imag()
template<typename Derived>
template<typename Func >
internal::traits<Derived>::Scalar Eigen::DenseBase< Derived >::redux ( const Func &  func) const
inherited
Returns
the result of a full redux operation on the whole matrix or vector using func

The template parameter BinaryOp is the type of the functor func which must be an associative operator. Both current C++98 and C++11 functor styles are handled.

See also
DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
template<typename Derived >
template<int RowFactor, int ColFactor>
const Replicate< Derived, RowFactor, ColFactor > Eigen::DenseBase< Derived >::replicate ( ) const
inherited
Returns
an expression of the replication of *this

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "m.replicate<3,2>() = ..." << endl;
cout << m.replicate<3,2>() << endl;

Output:

Here is the matrix m:
 7  6  9
-2  6 -6
m.replicate<3,2>() = ...
 7  6  9  7  6  9
-2  6 -6 -2  6 -6
 7  6  9  7  6  9
-2  6 -6 -2  6 -6
 7  6  9  7  6  9
-2  6 -6 -2  6 -6
See also
VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate
template<typename Derived>
const Replicate<Derived, Dynamic, Dynamic> Eigen::DenseBase< Derived >::replicate ( Index  rowFactor,
Index  colFactor 
) const
inlineinherited
Returns
an expression of the replication of *this

Example:

cout << "Here is the vector v:" << endl << v << endl;
cout << "v.replicate(2,5) = ..." << endl;
cout << v.replicate(2,5) << endl;

Output:

Here is the vector v:
 7
-2
 6
v.replicate(2,5) = ...
 7  7  7  7  7
-2 -2 -2 -2 -2
 6  6  6  6  6
 7  7  7  7  7
-2 -2 -2 -2 -2
 6  6  6  6  6
See also
VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
template<typename Derived>
void Eigen::DenseBase< Derived >::resize ( Index  newSize)
inlineinherited

Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does nothing else.

template<typename Derived>
void Eigen::DenseBase< Derived >::resize ( Index  rows,
Index  cols 
)
inlineinherited

Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does nothing else.

template<typename Derived >
DenseBase< Derived >::ReverseReturnType Eigen::DenseBase< Derived >::reverse ( )
inlineinherited
Returns
an expression of the reverse of *this.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the reverse of m:" << endl << m.reverse() << endl;
cout << "Here is the coefficient (1,0) in the reverse of m:" << endl
<< m.reverse()(1,0) << endl;
cout << "Let us overwrite this coefficient with the value 4." << endl;
m.reverse()(1,0) = 4;
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  6 -3  1
-2  9  6  0
 6 -6 -5  3
Here is the reverse of m:
 3 -5 -6  6
 0  6  9 -2
 1 -3  6  7
Here is the coefficient (1,0) in the reverse of m:
0
Let us overwrite this coefficient with the value 4.
Now the matrix m is:
 7  6 -3  1
-2  9  6  4
 6 -6 -5  3
template<typename Derived>
ConstReverseReturnType Eigen::DenseBase< Derived >::reverse ( ) const
inlineinherited

This is the const version of reverse().

template<typename Derived >
void Eigen::DenseBase< Derived >::reverseInPlace ( )
inlineinherited

This is the "in place" version of reverse: it reverses *this.

In most cases it is probably better to simply use the reversed expression of a matrix. However, when reversing the matrix data itself is really needed, then this "in-place" version is probably the right choice because it provides the following additional benefits:

  • less error prone: doing the same operation with .reverse() requires special care:
    m = m.reverse().eval();
  • this API enables reverse operations without the need for a temporary
  • it allows future optimizations (cache friendliness, etc.)
See also
VectorwiseOp::reverseInPlace(), reverse()
template<typename Derived>
ColsBlockXpr Eigen::DenseBase< Derived >::rightCols ( Index  n)
inlineinherited
Returns
a block consisting of the right columns of *this.
Parameters
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols(2):" << endl;
cout << a.rightCols(2) << endl;
a.rightCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols(2):
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
ConstColsBlockXpr Eigen::DenseBase< Derived >::rightCols ( Index  n) const
inlineinherited

This is the const version of rightCols(Index).

template<typename Derived>
template<int N>
NColsBlockXpr<N>::Type Eigen::DenseBase< Derived >::rightCols ( Index  n = N)
inlineinherited
Returns
a block consisting of the right columns of *this.
Template Parameters
Nthe number of columns in the block as specified at compile-time
Parameters
nthe number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols<2>():" << endl;
cout << a.rightCols<2>() << endl;
a.rightCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols<2>():
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int N>
ConstNColsBlockXpr<N>::Type Eigen::DenseBase< Derived >::rightCols ( Index  n = N) const
inlineinherited

This is the const version of rightCols<int>().

template<typename Derived>
const RoundReturnType Eigen::ArrayBase< Derived >::round ( ) const
inline
Returns
an expression of the coefficient-wise round of *this.

Example:

ArrayXd v = ArrayXd::LinSpaced(7,-2,2);
cout << v << endl << endl;
cout << round(v) << endl;

Output:

    -2
 -1.33
-0.667
     0
 0.667
  1.33
     2

-2
-1
-1
-0
 1
 1
 2
See also
ceil(), floor()
template<typename Derived>
RowXpr Eigen::DenseBase< Derived >::row ( Index  i)
inlineinherited
Returns
an expression of the i-th row of *this. Note that the numbering starts at 0.

Example:

m.row(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 0 0
4 5 6
0 0 1
See also
col(), class Block
template<typename Derived>
ConstRowXpr Eigen::DenseBase< Derived >::row ( Index  i) const
inlineinherited

This is the const version of row().

template<typename Derived>
ConstRowwiseReturnType Eigen::DenseBase< Derived >::rowwise ( ) const
inlineinherited
Returns
a VectorwiseOp wrapper of *this providing additional partial reduction operations

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the sum of each row:" << endl << m.rowwise().sum() << endl;
cout << "Here is the maximum absolute value of each row:"
<< endl << m.cwiseAbs().rowwise().maxCoeff() << endl;

Output:

Here is the matrix m:
  0.68  0.597  -0.33
-0.211  0.823  0.536
 0.566 -0.605 -0.444
Here is the sum of each row:
 0.948
  1.15
-0.483
Here is the maximum absolute value of each row:
 0.68
0.823
0.605
See also
colwise(), class VectorwiseOp, Reductions, visitors and broadcasting
template<typename Derived >
DenseBase< Derived >::RowwiseReturnType Eigen::DenseBase< Derived >::rowwise ( )
inlineinherited
Returns
a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
See also
colwise(), class VectorwiseOp, Reductions, visitors and broadcasting
template<typename Derived>
const RsqrtReturnType Eigen::ArrayBase< Derived >::rsqrt ( ) const
inline
Returns
an expression of the coefficient-wise inverse square root of *this.

This function computes the coefficient-wise inverse square root.

Example:

Array3d v(1,2,4);
cout << v.sqrt() << endl;

Output:

   1
1.41
   2
See also
pow(), square()
template<typename Derived>
SegmentReturnType Eigen::DenseBase< Derived >::segment ( Index  start,
Index  n 
)
inlineinherited
Returns
a dynamic-size expression of a segment (i.e. a vector block) in *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters
startthe first coefficient in the segment
nthe number of coefficients in the segment

Example:

cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl;
v.segment(1, 2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment(1, 2):
-2  6
Now the vector v is:
7 0 0 6
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, segment(Index)
template<typename Derived>
ConstSegmentReturnType Eigen::DenseBase< Derived >::segment ( Index  start,
Index  n 
) const
inlineinherited

This is the const version of segment(Index,Index).

template<typename Derived>
template<int N>
FixedSegmentReturnType<N>::Type Eigen::DenseBase< Derived >::segment ( Index  start,
Index  n = N 
)
inlineinherited
Returns
a fixed-size expression of a segment (i.e. a vector block) in *this

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters
Nthe number of coefficients in the segment as specified at compile-time
Parameters
startthe index of the first element in the segment
nthe number of coefficients in the segment as specified at compile-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl;
v.segment<2>(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment<2>(1):
-2  6
Now the vector v is:
 7 -2  0  0
See also
class Block
template<typename Derived>
template<int N>
ConstFixedSegmentReturnType<N>::Type Eigen::DenseBase< Derived >::segment ( Index  start,
Index  n = N 
) const
inlineinherited

This is the const version of segment<int>(Index).

template<typename Derived >
template<typename ThenDerived , typename ElseDerived >
const Select< Derived, ThenDerived, ElseDerived > Eigen::DenseBase< Derived >::select ( const DenseBase< ThenDerived > &  thenMatrix,
const DenseBase< ElseDerived > &  elseMatrix 
) const
inlineinherited
Returns
a matrix where each coefficient (i,j) is equal to thenMatrix(i,j) if *this(i,j), and elseMatrix(i,j) otherwise.

Example:

MatrixXi m(3, 3);
m << 1, 2, 3,
4, 5, 6,
7, 8, 9;
m = (m.array() >= 5).select(-m, m);
cout << m << endl;

Output:

 1  2  3
 4 -5 -6
-7 -8 -9
See also
class Select
template<typename Derived >
template<typename ThenDerived >
const Select< Derived, ThenDerived, typename ThenDerived::ConstantReturnType > Eigen::DenseBase< Derived >::select ( const DenseBase< ThenDerived > &  thenMatrix,
const typename ThenDerived::Scalar &  elseScalar 
) const
inlineinherited

Version of DenseBase::select(const DenseBase&, const DenseBase&) with the else expression being a scalar value.

See also
DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
template<typename Derived >
template<typename ElseDerived >
const Select< Derived, typename ElseDerived::ConstantReturnType, ElseDerived > Eigen::DenseBase< Derived >::select ( const typename ElseDerived::Scalar &  thenScalar,
const DenseBase< ElseDerived > &  elseMatrix 
) const
inlineinherited

Version of DenseBase::select(const DenseBase&, const DenseBase&) with the then expression being a scalar value.

See also
DenseBase::select(const DenseBase<ThenDerived>&, const DenseBase<ElseDerived>&) const, class Select
template<typename Derived >
Derived & Eigen::DenseBase< Derived >::setConstant ( const Scalar val)
inlineinherited

Sets all coefficients in this expression to value.

See also
fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
template<typename Derived >
Derived & Eigen::DenseBase< Derived >::setLinSpaced ( Index  newSize,
const Scalar low,
const Scalar high 
)
inlineinherited

Sets a linearly space vector.

The function generates 'size' equally spaced values in the closed interval [low,high]. When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Example:

VectorXf v;
v.setLinSpaced(5,0.5f,1.5f);
cout << v << endl;

Output:

 0.5
0.75
   1
1.25
 1.5
See also
CwiseNullaryOp
template<typename Derived >
Derived & Eigen::DenseBase< Derived >::setLinSpaced ( const Scalar low,
const Scalar high 
)
inlineinherited

Sets a linearly space vector.

The function fill *this with equally spaced values in the closed interval [low,high]. When size is set to 1, a vector of length 1 containing 'high' is returned.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

See also
setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
template<typename Derived >
Derived & Eigen::DenseBase< Derived >::setOnes ( )
inlineinherited

Sets all coefficients in this expression to one.

Example:

m.row(1).setOnes();
cout << m << endl;

Output:

 7  9 -5 -3
 1  1  1  1
 6 -3  0  9
 6  6  3  9
See also
class CwiseNullaryOp, Ones()
template<typename Derived >
Derived & Eigen::DenseBase< Derived >::setRandom ( )
inlineinherited

Sets all coefficients in this expression to random values.

Numbers are uniformly spread through their whole definition range for integer types, and in the [-1:1] range for floating point scalar types.

Warning
This function is not re-entrant.

Example:

m.col(1).setRandom();
cout << m << endl;

Output:

 0  7  0  0
 0 -2  0  0
 0  6  0  0
 0  6  0  0
See also
class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index)
template<typename Derived >
Derived & Eigen::DenseBase< Derived >::setZero ( )
inlineinherited

Sets all coefficients in this expression to zero.

Example:

m.row(1).setZero();
cout << m << endl;

Output:

 7  9 -5 -3
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also
class CwiseNullaryOp, Zero()
template<typename Derived>
const SignReturnType Eigen::ArrayBase< Derived >::sign ( ) const
inline
Returns
an expression of the coefficient-wise signum of *this.

This function computes the coefficient-wise signum.

Example:

Output:

See also
pow(), square()
template<typename Derived>
const SinReturnType Eigen::ArrayBase< Derived >::sin ( ) const
inline
Returns
an expression of the coefficient-wise sine of *this.

This function computes the coefficient-wise sine. The function MatrixBase::sin() in the unsupported module MatrixFunctions computes the matrix sine.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.sin() << endl;

Output:

1.22e-16
       1
   0.866
See also
cos(), asin()
template<typename Derived>
const SinhReturnType Eigen::ArrayBase< Derived >::sinh ( ) const
inline
Returns
an expression of the coefficient-wise hyperbolic sin of *this.

Example:

ArrayXd v = ArrayXd::LinSpaced(5,0,1);
cout << sinh(v) << endl;

Output:

    0
0.253
0.521
0.822
 1.18
See also
sin(), tanh(), cosh()
template<typename Derived>
const SqrtReturnType Eigen::ArrayBase< Derived >::sqrt ( ) const
inline
Returns
an expression of the coefficient-wise square root of *this.

This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the unsupported module MatrixFunctions computes the matrix square root.

Example:

Array3d v(1,2,4);
cout << v.sqrt() << endl;

Output:

   1
1.41
   2
See also
pow(), square()
template<typename Derived>
const SquareReturnType Eigen::ArrayBase< Derived >::square ( ) const
inline
Returns
an expression of the coefficient-wise square of *this.

Example:

Array3d v(2,3,4);
cout << v.square() << endl;

Output:

 4
 9
16
See also
operator/(), operator*(), abs2()
template<typename Derived >
internal::traits< Derived >::Scalar Eigen::DenseBase< Derived >::sum ( ) const
inlineinherited
Returns
the sum of all coefficients of *this
See also
trace(), prod(), mean()
template<typename Derived>
template<typename OtherDerived >
void Eigen::DenseBase< Derived >::swap ( const DenseBase< OtherDerived > &  other)
inlineinherited

swaps *this with the expression other.

template<typename Derived>
template<typename OtherDerived >
void Eigen::DenseBase< Derived >::swap ( PlainObjectBase< OtherDerived > &  other)
inlineinherited

swaps *this with the matrix or array other.

template<typename Derived>
SegmentReturnType Eigen::DenseBase< Derived >::tail ( Index  n)
inlineinherited
Returns
a dynamic-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters
nthe number of coefficients in the segment

Example:

cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail(2) << endl;
v.tail(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, block(Index,Index)
template<typename Derived>
ConstSegmentReturnType Eigen::DenseBase< Derived >::tail ( Index  n) const
inlineinherited

This is the const version of tail(Index).

template<typename Derived>
template<int N>
FixedSegmentReturnType<N>::Type Eigen::DenseBase< Derived >::tail ( Index  n = N)
inlineinherited
Returns
a fixed-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters
Nthe number of coefficients in the segment as specified at compile-time
Parameters
nthe number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl;
v.tail<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
See also
class Block
template<typename Derived>
template<int N>
ConstFixedSegmentReturnType<N>::Type Eigen::DenseBase< Derived >::tail ( Index  n = N) const
inlineinherited

This is the const version of tail<int>.

template<typename Derived>
const TanReturnType Eigen::ArrayBase< Derived >::tan ( ) const
inline
Returns
an expression of the coefficient-wise tan of *this.

Example:

Array3d v(M_PI, M_PI/2, M_PI/3);
cout << v.tan() << endl;

Output:

-1.22e-16
 1.63e+16
     1.73
See also
cos(), sin()
template<typename Derived>
const TanhReturnType Eigen::ArrayBase< Derived >::tanh ( ) const
inline
Returns
an expression of the coefficient-wise hyperbolic tan of *this.

Example:

ArrayXd v = ArrayXd::LinSpaced(5,0,1);
cout << tanh(v) << endl;

Output:

    0
0.245
0.462
0.635
0.762
See also
tan(), sinh(), cosh()
template<typename Derived>
Block<Derived> Eigen::DenseBase< Derived >::topLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a top-left corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner(2, 2):" << endl;
cout << m.topLeftCorner(2, 2) << endl;
m.topLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner(2, 2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
const Block<const Derived> Eigen::DenseBase< Derived >::topLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topLeftCorner(Index, Index).

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::topLeftCorner ( )
inlineinherited
Returns
an expression of a fixed-size top-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,2>():" << endl;
cout << m.topLeftCorner<2,2>() << endl;
m.topLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,2>():
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::topLeftCorner ( ) const
inlineinherited

This is the const version of topLeftCorner<int, int>().

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::topLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a top-left corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.topLeftCorner<2,Dynamic>(2,2) << endl;
m.topLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,Dynamic>(2,2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also
class Block
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::topLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topLeftCorner<int, int>(Index, Index).

template<typename Derived>
Block<Derived> Eigen::DenseBase< Derived >::topRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a top-right corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner(2, 2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
const Block<const Derived> Eigen::DenseBase< Derived >::topRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topRightCorner(Index, Index).

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::topRightCorner ( )
inlineinherited
Returns
an expression of a fixed-size top-right corner of *this.
Template Parameters
CRowsthe number of rows in the corner
CColsthe number of columns in the corner

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,2>():
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block<int,int>(Index,Index)
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::topRightCorner ( ) const
inlineinherited

This is the const version of topRightCorner<int, int>().

template<typename Derived>
template<int CRows, int CCols>
Block<Derived, CRows, CCols> Eigen::DenseBase< Derived >::topRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a top-right corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.topRightCorner<2,Dynamic>(2,2) << endl;
m.topRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,Dynamic>(2,2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block
template<typename Derived>
template<int CRows, int CCols>
const Block<const Derived, CRows, CCols> Eigen::DenseBase< Derived >::topRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topRightCorner<int, int>(Index, Index).

template<typename Derived>
RowsBlockXpr Eigen::DenseBase< Derived >::topRows ( Index  n)
inlineinherited
Returns
a block consisting of the top rows of *this.
Parameters
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows(2):" << endl;
cout << a.topRows(2) << endl;
a.topRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows(2):
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
ConstRowsBlockXpr Eigen::DenseBase< Derived >::topRows ( Index  n) const
inlineinherited

This is the const version of topRows(Index).

template<typename Derived>
template<int N>
NRowsBlockXpr<N>::Type Eigen::DenseBase< Derived >::topRows ( Index  n = N)
inlineinherited
Returns
a block consisting of the top rows of *this.
Template Parameters
Nthe number of rows in the block as specified at compile-time
Parameters
nthe number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows<2>():" << endl;
cout << a.topRows<2>() << endl;
a.topRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows<2>():
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
template<typename Derived>
template<int N>
ConstNRowsBlockXpr<N>::Type Eigen::DenseBase< Derived >::topRows ( Index  n = N) const
inlineinherited

This is the const version of topRows<int>().

template<typename Derived >
Transpose< Derived > Eigen::DenseBase< Derived >::transpose ( )
inlineinherited
Returns
an expression of the transpose of *this.

Example:

cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the transpose of m:" << endl << m.transpose() << endl;
cout << "Here is the coefficient (1,0) in the transpose of m:" << endl
<< m.transpose()(1,0) << endl;
cout << "Let us overwrite this coefficient with the value 0." << endl;
m.transpose()(1,0) = 0;
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  6
-2  6
Here is the transpose of m:
 7 -2
 6  6
Here is the coefficient (1,0) in the transpose of m:
6
Let us overwrite this coefficient with the value 0.
Now the matrix m is:
 7  0
-2  6
Warning
If you want to replace a matrix by its own transpose, do NOT do this:
m = m.transpose(); // bug!!! caused by aliasing effect
Instead, use the transposeInPlace() method:
m.transposeInPlace();
which gives Eigen good opportunities for optimization, or alternatively you can also do:
m = m.transpose().eval();
See also
transposeInPlace(), adjoint()
template<typename Derived >
DenseBase< Derived >::ConstTransposeReturnType Eigen::DenseBase< Derived >::transpose ( ) const
inlineinherited

This is the const version of transpose().

Make sure you read the warning for transpose() !

See also
transposeInPlace(), adjoint()
template<typename Derived >
void Eigen::DenseBase< Derived >::transposeInPlace ( )
inlineinherited

This is the "in place" version of transpose(): it replaces *this by its own transpose. Thus, doing

m.transposeInPlace();

has the same effect on m as doing

m = m.transpose().eval();

and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.

Notice however that this method is only useful if you want to replace a matrix by its own transpose. If you just need the transpose of a matrix, use transpose().

Note
if the matrix is not square, then *this must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.
See also
transpose(), adjoint(), adjointInPlace()
template<typename Derived>
template<typename CustomUnaryOp >
const CwiseUnaryOp<CustomUnaryOp, const Derived> Eigen::ArrayBase< Derived >::unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const
inline

Apply a unary operator coefficient-wise.

Parameters
[in]funcFunctor implementing the unary operator
Template Parameters
CustomUnaryOpType of func
Returns
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define function to be applied coefficient-wise
double ramp(double x)
{
if (x > 0)
return x;
else
return 0;
}
int main(int, char**)
{
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also
class CwiseUnaryOp, class CwiseBinaryOp
template<typename Derived>
template<typename CustomViewOp >
const CwiseUnaryView<CustomViewOp, const Derived> Eigen::ArrayBase< Derived >::unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const
inline
Returns
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also
class CwiseUnaryOp, class CwiseBinaryOp
template<typename Derived>
CoeffReturnType Eigen::DenseBase< Derived >::value ( ) const
inlineinherited
Returns
the unique coefficient of a 1x1 expression
template<typename Derived >
template<typename Visitor >
void Eigen::DenseBase< Derived >::visit ( Visitor &  visitor) const
inherited

Applies the visitor visitor to the whole coefficients of the matrix or vector.

The template parameter Visitor is the type of the visitor and provides the following interface:

struct MyVisitor {
// called for the first coefficient
void init(const Scalar& value, Index i, Index j);
// called for all other coefficients
void operator() (const Scalar& value, Index i, Index j);
};
Note
compared to one or two for loops, visitors offer automatic unrolling for small fixed size matrix.
See also
minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux()
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Zero ( Index  rows,
Index  cols 
)
inlinestaticinherited
Returns
an expression of a zero matrix.

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Zero() should be used instead.

Example:

cout << MatrixXi::Zero(2,3) << endl;

Output:

0 0 0
0 0 0
See also
Zero(), Zero(Index)
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Zero ( Index  size)
inlinestaticinherited
Returns
an expression of a zero vector.

The parameter size is the size of the returned vector. Must be compatible with this MatrixBase type.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

This variant is meant to be used for dynamic-size vector types. For fixed-size types, it is redundant to pass size as argument, so Zero() should be used instead.

Example:

cout << RowVectorXi::Zero(4) << endl;
cout << VectorXf::Zero(2) << endl;

Output:

0 0 0 0
0
0
See also
Zero(), Zero(Index,Index)
template<typename Derived >
const DenseBase< Derived >::ConstantReturnType Eigen::DenseBase< Derived >::Zero ( )
inlinestaticinherited
Returns
an expression of a fixed-size zero matrix or vector.

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variants taking size arguments.

Example:

cout << Matrix2d::Zero() << endl;
cout << RowVector4i::Zero() << endl;

Output:

0 0
0 0
0 0 0 0
See also
Zero(Index), Zero(Index,Index)

Friends And Related Function Documentation

template<typename Derived >
std::ostream & operator<< ( std::ostream &  s,
const DenseBase< Derived > &  m 
)
related

Outputs the matrix, to the given stream.

If you wish to print the matrix with a format different than the default, use DenseBase::format().

It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers. If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.

See also
DenseBase::format()

The documentation for this class was generated from the following files: