2.1. 支持的硬件

Debian 不会超出 Linux 内核与 GNU 工具集所支持的硬件范围之外。因此,任何被移植了 Linux 内核、libc、gcc 等,并拥有对应的 Debian 移植版的硬件体系或平台都可以运行 Debian。请参考移植页面 http://www.debian.org/ports/arm/ 以了解更多已被 Debian GNU/Linux 测试过的 ARM 体系。

本章仅包含一些通用的信息,以及在何处可以获得更多信息的指导,而不是试图列出支持 ARM 的所有不同硬件配置。

2.1.1. 支持的体系

Debian GNU/Linux 8 支持十一种主要的体系和一些称为 flavors 的衍生品种。

体系 Debian 命名 子体系 Flavor
Intel x86-based i386    
AMD64 & Intel 64 amd64    
ARM armel Intel IOP32x ixp4xx
Marvell Kirkwood kirkwood
Marvell Orion orion5x
Versatile versatile
带 FPU 的 ARM armhf multiplatform armmp
multiplatform for LPAE-capable systems armmp-lpae
64bit ARM arm64    
MIPS (big endian) mips SGI IP22 (Indy/Indigo 2) r4k-ip22
SGI IP32 (O2) r5k-ip32
MIPS Malta (32 bit) 4kc-malta
MIPS Malta (64 bit) 5kc-malta
MIPS (little endian) mipsel MIPS Malta (32 bit) 4kc-malta
MIPS Malta (64 bit) 5kc-malta
IBM/Motorola PowerPC powerpc PowerMac pmac
PReP prep
MIPS (little endian) ppc64el    
64bit IBM S/390 s390x 来自 VM-reader 和 DASD 的 IPL generic

Debian GNU/kFreeBSD 8 支持两种架构。

体系 Debian 命名
Intel x86-based kfreebsd-i386
AMD64 & Intel 64 kfreebsd-amd64

本文档主要讲述的是 ARM 体系下的安装。如果您在寻找其他 Debian 所支持的体系的信息,请访问 Debian-Ports 网页。

2.1.2. CPU,主板和视频支持

ARM systems are a lot more heterogenous than the i386/amd64-based PC architecture, where all systems share a common system firmware (BIOS or/and UEFI) which handles the board-specific basic hardware initialization in a standardized way. The ARM architecture is used mainly in so-called systems-on-chip (SoCs). These SoCs are designed by many different companies with vastly varying hardware components even for the very basic functionality required to bring the system up. Systems using them usually lack a common system firmware interface and as a result, on ARM systems the Linux kernel has to take care of many system-specific low-level issues which are handled by the mainboard's BIOS in the PC world.

At the beginning of the ARM support in the Linux kernel, this resulted in the requirement of having a seperate kernel for each ARM system in contrast to the one-fits-all kernel for PC systems. As this approach does not scale to a large number of different systems, work has started to be able to provide a single ARM kernel that can run on different ARM systems. Support for newer ARM systems gets implemented in a way that allows the use of such a multiplatform kernel, but for several older systems a seperate specific kernel is still required. Because of this, the standard Debian distribution only supports installation on a selected number of older ARM systems in addition to the newer systems which are supported by the ARM multiplatform (armmp) kernel.

The ARM architecture has evolved over time and modern ARM processors provide features which are not available in older models. Debian therefore provides two ARM ports, the Debian/armel and the Debian/armhf port. Debian/armel targets older ARM processors without support for a hardware floating point unit (FPU), while Debian/armhf works only on newer ARM processors which implement at least the ARMv7 architecture with version 3 of the ARM vector floating point specification (VFPv3). Debian/armhf makes use of the extended features and performance enhancements available on these models.

大多数的 ARM CPU 可以运行在(big 或 little)任一 endian 模式下。但是当前绝大多少系统的实现都是使用 little-endian 模式。Debian 现在也仅支持 little-endian ARM 系统。

2.1.2.1. Platforms supported by Debian/armel

The following platforms are supported by Debian/armel; they require platform-specific kernels.

Intel IXP4xx

The Intel IXP4xx processor series is used in network attached storage devices like the Linksys NSLU2.

Kirkwood

Kirkwood 是 Marvell 的 SoC 产品,集成了 ARM CPU、Ethernet、SATA、USB,以及其他一些功能。当前我们能支持以下几种基于 Kirkwood 的设备:OpenRD (OpenRD-Base, OpenRD-Client 和 OpenRD-Ultimate)、plug computers (SheevaPlug、GuruPlug 和 DreamPlug)QNAP Turbo Station (所有 TS-11x、TS-21x 和 TS-41x 型号),以及 LaCie NASes (Network Space v2、Network Space Max v2、Internet Space v2、d2 Network v2、2Big Network v2 和 5Big Network v2)。

Orion5x

Orion 是 Marvell 的 SoC 产品,集成了 ARM CPU、Ethernet、SATA、USB,以及其他一些功能。市场上有很多 NAS 设备基于 Orion 芯片。我们当前支持以下几种基于 Orion 的设备: Buffalo KuroboxD-Link DNS-323HP mv2120

Versatile

Versatile 平台由 QEMU 模拟,如果您没有硬件设备,用它来测试运行在 ARM 上的 Debian 是一个不错的方法。

2.1.2.2. Platforms no longer supported by Debian/armel

IOP32x

Intel's I/O Processor (IOP) line is found in a number of products related to data storage and processing, such as the GLAN Tank from IO-Data and the Thecus N2100. Debian has supported the IOP32x platform in Debian 7, but does not support it anymore from version 8 on due to hardware constraints of the platform which make it unsuitable for the installation of newer Debian releases.

MV78xx0

The MV78xx0 platform has been used on the Marvell DB-78xx0-BP development board. It was supported in Debian 7 with a platform-specific kernel (based on the Linux kernel version 3.2), but is not supported anymore from Debian 8 onwards.

2.1.2.3. Platforms supported by Debian/armhf

The following systems are known to work with Debian/armhf using the multiplatform (armmp) kernel:

Freescale MX53 Quick Start Board

The IMX53QSB is a development board based on the i.MX53 SoC.

versatile

The Versatile Express is a development board series from ARM consisting of a baseboard which can be equipped with various CPU daughterboards.

Certain Allwinner sunXi-based development boards and embedded systems

The armmp kernel supports several development boards and embedded systems based on the Allwinner A10 (architecture codename sun4i), A10s/A13 (architecture codename sun5i) and A20 (architecture codename sun7i) SoCs. Full installer support is currently available for the following sunXi-based systems:

  • Cubietech Cubieboard 1 + 2 / Cubietruck

  • LeMaker Banana Pi and Banana Pro

  • LinkSprite pcDuino

  • Mele A1000

  • Miniand Hackberry

  • Olimex A10-Olinuxino-LIME / A10s-Olinuxino Micro / A13-Olinuxino / A13-Olinuxino Micro / A20-Olinuxino-LIME / A20-Olinuxino-LIME2 / A20-Olinuxino Micro

  • PineRiver Mini X-Plus

System support for Allwinner sunXi-based devices is limited to drivers and device-tree information available in the mainline Linux kernel. The android-derived linux-sunxi.org 3.4 kernel series is not supported by Debian.

The mainline Linux kernel generally supports serial console, ethernet, SATA, USB and MMC/SD-cards on Allwinner A10, A10s/A13 and A20 SoCs, but it does not have native drivers for the display (HDMI/VGA/LCD) and audio hardware in these SoCs. The NAND flash memory that is built into some sunXi-based systems is not supported.

Using a local display is technically possible without native display drivers via the simplefb infrastructure in the mainline kernel, which relies on the u-boot bootloader for initializing the display hardware, but this is not supported by the u-boot version in Debian 8.

SolidRun Cubox-i2eX / Cubox-i4Pro

The Cubox-i series is a set of small, cubical-shaped systems based on the Freescale i.MX6 SoC family. System support for the Cubox-i series is limited to drivers and device-tree information available in the mainline Linux kernel; the Freescale 3.0 kernel series for the Cubox-i is not supported by Debian. Available drivers in the mainline kernel include serial console, ethernet, USB, MMC/SD-card and display support over HDMI (console and X11). In addition to that, the eSATA port on the Cubox-i4Pro is supported.

Wandboard Quad

The Wandboard Quad is a development board based on the Freescale i.MX6 Quad SoC. System support for it is limited to drivers and device-tree information available in the mainline Linux kernel; the wandboard-specific 3.0 and 3.10 kernel series from wandboard.org are not supported by Debian. The mainline kernel includes driver support for serial console, display via HDMI (console and X11), ethernet, USB, MMC/SD and SATA. Support for the onboard audio options (analog, S/PDIF, HDMI-Audio) and for the onboard WLAN/Bluetooth module is not available in Debian 8.

Generally, the ARM multiplatform support in the Linux kernel allows running debian-installer on armhf systems not explicitly listed above, as long as the kernel used by debian-installer has support for the target system's components and a device-tree file for the target is available. In these cases, the installer can usually provide a working userland installation, but it probably cannot automatically make the system bootable, as doing that in many cases requires device-specific information.

When using debian-installer on such systems, you have to manually make the system bootable at the end of the installation, e.g. by running the required commands in a shell started from within debian-installer.

2.1.2.4. Platforms no longer supported by Debian/armhf

EfikaMX

The EfikaMX platform (Genesi Efika Smartbook and Genesi EfikaMX nettop) has been supported in Debian 7 with a platform-specific kernel, but is not supported anymore from Debian 8 onwards. The code required to build the formerly used platform-specific kernel has been removed from the upstream Linux kernel source in 2012, so Debian cannot provide newer builds.

Using the armmp multiplatform kernel on the EfikaMX platform would require device-tree support for it, which is currently not available.

2.1.3. 图形卡支持

对显卡和其他定点设备的具体支持情况,见 http://xorg.freedesktop.org/。 Debian 8 包含 X.Org 7.7 版。

2.1.4. 网络连接硬件

几乎所有被 Linux 内核支持的网卡 (NIC) 都被安装系统支持;驱动程序通常会自动加载。

ARM 上,支持大多数内置的以太网设备,并提供额外的 PCI 和 USB 设备模块。

2.1.5. 外围设备与其他硬件

Linux 支持众多的硬件设备,比如:鼠标、打印机、扫描仪、PCMCIA 和 USB 设备。然而,在安装系统的时候,并不需要其中的大部分设备。